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stability Analysis of Cohesion Properties of 
Cooperative Agents with Limited Sensor Capability^ 

Yanfei Liu and Kevin M. Passino ^ 
Dept ElectricaJ, Engineering 

The Ohio State University 
2015 Neil Avenue, Columbus, Ohio 43210 

Abstract 
Networked unmanned aerial vehicles (UAVs) are being developed for various applications. Multiple 

robots can be designed to coordinate to accomplish certain tasks. Their cooperative behaviors resemble, 
to a certain extent, those of bacteria, bees and birds that work together for food in the biological 
world. Suppose that we refer to all such groups of entities as "social foraging swarms." In order for 
such multi-agent systems to succeed it is often critical that they can both maintain cohesive behaviors 
and appropriately respond to environmental stimuli. In this paper we derive stability conditions under 
which social foraging swarms with limited sensing capability maintain cohesiveness when following certain 
resource profiles. The results are verified with simulations and challenge us to look for some connections 
between swarms with limited sensing capability, noisy measurements, and changes of communication 
topology. 

1    Introduction 
Swarming has been studied extensively in biology [1, 2] and engineering applications including "intelligent 
vehicle highway systems," formation control for robots, aircraft, and cooperative control for uninhabited 
autonomous (air) vehicles, etc. [3, 4, 5, 6]. Early work on swarm stability is in [7, 8]. Some lately work 
includes [9, 10, 11], where the authors also consider asynchronous and time delays. Some previous work 
studies swarms that perform social foraging (i.e., follow certain resource profiles while achieving cohesiveness) 
[12, 13, 14, 15, 16]. Due to the limited sensing capability of the agents or broken communication network, 
changes on communication topology of the swarm agents may happen and affect the system stability. Some 
work on the topology changes in multi-agents includes [17, 18], where the authors study the convergence of 
the system based on graph theory. 

In this paper, we continue some of our earlier work on studying stability properties of foraging swarms 
in [19, 20]. The main difference with our previous work is that here we consider the effect of the swarm 
agents with limited sensing capability. Thus, we are actually dealing with, to a certain extent, a dynamically 
changing network topology. Although it is not a fully switching network, the framework allows us to get 
some progress. Here, a fully switching network is approximated by adopting an appropriate sensor profile 
in our framework. We are able to obtain some local results which show an explicit relationship between the 
sensor profile a.nd the initial condition of the system such that stable social foraging swarms may be achieved. 
In comparison, the authors in [18] deal with a fully switching network, but to obtain some stability results, 
they need to assume there exists an infinite sequence of contiguous, non-empty, bounded time intervals such 
that all the agents are linked together during each such interval. Such assimiption may be difficult to verify, 
especially for a biological system. 

The remainder of this paper is organized as follows: In Section 2 we introduce a basic model for agents, 
interactions, and the foraging environment. Then, a model for sensor profile, control, and error dynamics 
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is introduced. Section 3 holds the main results on stability analysis of swarm cohesion. Section 4 holds the 
simulation results and some concluding remarks are provided in Section 5. 

2    Models for the Cooperative Social Foraging Swarms 

2.1 Basic Model for Agents, Interactions and Environment 

Consider a swarm composed of an interconnection of N "agents," each of which has point mass dynamics 
given by 

X*   =   «• (1) 

where a;* e 3?" is the position, v* e 3t" is the velocity, Mf is the mass, and «* € 3?" is the (force) control 
input for the i"* agent. 

Agent to agent interactions considered here are of the "attract-repel" type where each agent seeks to be 
in a position that is "comfortable" relative to its neighbors (and for us all other agents are its neighbors). 
Attraction indicates that each agent wants to be close to every other agent and it provides the mechanism 
for achieving grouping and cohesion of the group of agents. Repulsion provides the mechanism where each 
agent does not want to be too close to any other agent (e.g., for animals to avoid collisions and excessive 
competition for resoiurces). Attraction here will be represented in «* in a form like -k (a;* - x^) where fc > 0 
is a scalar that represents the strength of attraction. For repulsion, we adopt 2-norm and use a repulsion 
term in u* of the form ^ 

where ifcr > 0 and r, > 0. Other tjrpes of attraction and repulsion terms are also possible. 
For the environment that the agents move in, we will simply consider the case where they move over a 

"resource profile" J{x) where x 6 3J". Agents move in the direction of the negative gradient of J{x) (i.e., 
in the direction of —VJ(x) = -||) in order to move away from "bad" areas and into "good" areas of the 
environment. We will assume that resource profile J(x) is any profile that is continuous with finite slope at 
all points. 

2.2 Model for Sensor Profile, Control and Error Dynamics 

Let X = jf X)fci ^' ^^'^ ^ — "k Y^iLi '"* be the centroid position and velocity of the swarm, respectively. 
To study the stability of swarm cohesion we study the dynamics of an error system with e* = a;' - x and 

e* = w* - V. Let E' = k"^, cj,"^]    and E = [E^'^,E^'^,...,E'^'^]^. We have 

x' —x' = (x' — x) — (x^ — x) = e* — e^ 

v' — v^ = (y* —v) — (tP —v) =e\, — el 

Define some short-hand notation as x'^ = x* — x-', W = v' — -u^, e^ = Sp — ej„ e'J = e* — cj. The error 
dynamics are given by 

•t             A 

Assume each agent has range-limited sensing capability. To represent this, define a mOnotonically de- 
creasing function /(x): 3?+ —>■ (0,1] as the "sensor profile" such that lima._^o+ fi^) = 1 and Iima:_oo fi^) = 0. 
A candidate function that satisfies these requirements is a Gaussian-shaped function centered at zero or 

fix) = -^ arctan(c/,(x - c^)) + ^ (4) 



where c/o is a normalization factor and c/i and c/2 may be adjusted to obtain different sensing range profiles. 
This function is shown in Figiure 1 for one set of parameters. 

Figure 1: Sensor profile f{x). 

Let N'{t) = Y!^^I f ih^'l) for all t = 1,...,iV. By definition 1<N'<N aoA N' may or may not be 
an integer. Define for each agent i 

i=i 

\xP 

\v' 
3=1 

which we view as swarm position and velocity centers from the perspective of agent i. Rrom the equations 
above, the position and velocity of agent i relative to sc* and «* are 

j=i i=i 3=1 

(5) 

and similarly for e*. The variable c* is the vector of displacements between the position of agent t and 
the center of all its neighbors where the notion of "neighbor" is specified via the sensor profile. We do not 
assume that x'^ (w'^') and hence e* (ej,) can be sensed perfectly. In particular, let d'J e 3i" and tfj € 3t" 

be sensing errors. Let x'^" = x*J - d*J and t)*J = v'J - d^J. Define N'{t) = EJLi/(||^*^||)- We assume 
t^* = 4* = 0 for all t, so we have 1<N' <N. H in Equation (5) we replace x*^ (w*J) with x^ (t)*^') we get 

j = Tif^fiPn) -'' = i E/ (11-^^11) (4^ - 40 = 4 - 4 E/ (11^*' '4 4 (6) 

with 4 = j?T Ef=i / (ll^'i) 4''- Similarly we obtain 4, with 4 = I|T Ef=i / (P'^H) 4/- Alternatively, 
we could also define e* = ej, - d^ and get the same t3T>e of results as below. Here, we assume that we can 
measure eJ, and eJ, 

We assume the resource profile is continuous with finite slope at all points, i.e., ||VJ(x(t))|| < R, where R 
is a known constant. Also assume the »"* agent senses VJ (a;*(<)), the gradient of the profile at its position, 
but also with some error d) e K". That is, each agent i senses VJ (x*(t)) - d^f. For simplicity, we will write 
V J (a:*(<)) as V J* firom now on. 

For all the noise mentioned above, we assume they are sufiiciently smooth and bounded by some constants. 
Specifically, we assmne 

\\m<Dv 
11411^^/ 

(7) 



where Dp > 0, I>„ > 0 and Dy > 0 are known constants. Note that |4|| < ^ ^iLi / (H^'-'ll) W^JW = ^P 

and similarly,   dj, <D„. 
Now suppose the general form of the control input for each agent is 

u*   =   -Mikpei,-MiKe\,-Mikv\-MikfVJ* 

M.^Ee^(-^ii^'iyii'^'^in(/(rii).-o (8) 

where the scalars fcp > 0 and Jfe„ > 0 indicate how aggressive each agent is in aggregating, fc > 0 works as a 
"velocity damping gain," kr>0 sets how much that agent wants to be away from others, r, > 0 represents its 
repulsion range, and kf >0 indicates that agent's desire to move along the negative gradient of the respmrce 
profile, lb use Equation (8) as our control we assume that each agent knows its own velocity v*, and ej, and 
ej, as discussed above. Also we assume that agent i can sense /(||x'J||)x*^ for all j ^ i, j = 1,..., N. We 
think of fQ\x*^ ||)x*-' as a noisy range-limited measurement of a:*^'. In summary, in all cases each agent i only 
needs noisy range-limited sensing for its "decision making" via Equation (8). 

Next, we derive the error system of which we will study stability properties. Let 

0 

Rrom Equations (6) and (8) we have 

i,< = 2-„*   =   -kpii,-k„ei-kv^-kj(VJ*-<Pf) + ky 

N 
Ky 

N 

+fcrT* + fcp4 + *=X + */4 

i + fe E (1 - ^/ (ll**'ll)) 4 - ^4 + 4E (1 - A/ (||x«||)) 4 - kv' - kfvr 
^    i=l ^^    3=1 

=  -Vp + ^ 

+krT' + kpd^p + A;„4 + h<^f 

^A -Wi^^f (ll^'ll) ^- - ''A - IT E ^-^ (ll^^'ll) 4 - ^^' - ''f^-^' 
■'^ i=l ■'^ J=l 

+krT* + kpOp + A;„< + fc/4 

=   -fcpe;, -Kei-^Y,^f (||i*^' II) ([*p, K\ E') - fcv* - kjVJ' + KT^ + *p4 + fc„4 + A;/d> 

where A/ (||^*^||) = 1 - / (||*'-'||) ^ 0 (recall 0 < f{x) < 1). To obtain the above expression, we used the 

facts that X)jLi ej = 0 and X)jLi ej = 0. Then 

N N N 

i   =    ^E*' = ^E   -kpei,-k.ei-l:'£^f{\\x^)i[k,k.]Ei)-kv'-kfVr 

+krT* + kptPp + kydi, + kf<rj 

N 

N^ 
1=1 

N 
— A;v — kfR -I- fcrT -f fcpd^ + k^d^ + fc/d/ (9) 



with Rit) = ^ Eili VJ^(t), f (t) = ^ Eili At), U) = ir T,lx 4(*), Mt) = .^ Eili 4(*)> and J^*) = 
F Eili 4(*)-So we have 

1    ^ 
ei = £,• - *   =    -fcpe^ _ (fc„ + fc)et - 4T X) A/ (||x'^-1|) ([fcp fc„] ^^•) 

1^ 

t=i 
^EA/(||X'^||)([A^M^O kf{VJ'-R)+kr{T*-f) 

+kp (d^p-dp^+k„ (<f„ - d„) + A;/ (4 - df) 

=   -kpei,-{k„ + k)ei + 6'{E) + <l,' (10) 

where 

N 

iV' E^/(II^''II)([*PM^O 
i=i ■'*   i=i J=i 

^«   =    -A:y (VJ* - R) + kr (r* - f) + fcp (t^ - Jp) + fc„ (d^ - <i„) + )fe/ (4 - J^) 

With / an n X n identity matrix, the error dynamics of the i*'* agent may be written as 

Note that any matrix 

^'=[.li -(j+fc)/]^+[;](<^'(^)+^o 

0 /     1 
-kii -kii \ 

(11) 

with A;i > 0, A;2 > 0 has eigenvalues given by the roots of (s^ + kzs + Jfci)", which are in the strict left half 
plane. Thus, the matrix A above is Hurwitz with fcp > 0, &„ > 0 and A; > 0. 

3    Stability Analysis of Cohesive Social Foraging 

To study the stability of the error dynamics, it is convenient to choose Lyapunov function for each agent 

Vi (E*) = E*^PEr (12) 

with P = P"^ a 2n X 2n matrix and P > 0 (a positive definite matrix). Then we have 

Vi = ET'^ {PA + A'^P) E^ + 2E^^PB {P{E) + 4>') (13) 

-Q 

Note that when Q = Q""" and Q > 0, the unique solution P of P^ + A'^P = -Q has P = P^ and P > 0 as 
needed. 

Choose for the composite system 
N 

V{E) = J2Vi{E') 

where Vi (E*) is given in Equation (12). Then we have 

E (A„,,n(P) ||£;'||^)  < ViE) < f; (X,na4P) \\Ef) 
»=1 t=l 

(14) 



For now, assume ;^A/ (||x*^||) IKA^, *„]|| < a for any t and j at any t, with a some constant to be determined. 
Apparently, the smaller 

the smaller 5 can be. In fact, a reaches its minimum of 0 when A/ {\\x*J \\) = 0 for all i and j. Then we have 

<X;2a||E^||  (15) 
j=i ^ 1=1 [^*  i=i 

(16) 11^*II < J-T = 2kfR + 2kr exp f-i j r, + 2fcpi?p + 2fc„D„ + 2fc/I>/ 

Using the above equations and the fact that ||B|| = 1 we have 

v{E) = 5]]v;(£;') = Er^ '?^' + 2-B* ps(5*(£;) + ^*)j 
«=1 t=l 

<   JZ [-\nUQ) Wf + 2 \\W\\ A„„.(P) mE)\\ + 110*11)] 

The equation above indicates that smaller value of A"°'|QI '^ desirable for achieving stabiUty. Note that the 

fraction is minimized by choosing Q = I, thus, we replace it with PM = ^^X^'}Q\Q2I ~ ^rnax{P\Q=i), where 
the explicit form of PM may be obtained by solving the Lyapimov equation A^P + PA = —I and we have 

()kp + l)' + (fe„ + fe)='       l/k^ + jk^ + kr-iy 
^^ 2M*« + fc)        Vv    2^^ + *;)    / 

So Equation (17) now is written as 

(17) 

*=^ 
(18) 

=    E   -|K + c||^|| + ||S^||f:(a||£i||) 
t=i [ i=i 

with c = PM^T and a = 2/3AfO are positive constants. Note that for any 0,0 <0 <1, 

-\\Ef + c\m    =    -(1-^)||E^f-^ 11^11% cll^^^ll 
<    -{l-e)\\Ef,y\\E'\\>r 

(19) 

(20) 



where r = § and a = -(1 - 0) < 0. This implies that as long as ||£*|| > r, the first two terms in (19) 
combined will give a negative contribution to V(E). 

Next, we seek conditions under which V(E) < 0. To do this, we consider the third term in (19) and 
combine it with the above results. Consider the general situation where some of the E* are such that \\E*\\ < r 
and others are not. Define sets 

Ho = {i: ll^^ll >r, i € 1,...,N} = {ij,, 4.---. io°} 

and 
nj = {i:\\E'\\<r,i€l,...,N} = {ilil...,if'] 

where No and Nj are the size of IIo and 11/, respectively. Also, UoiJUi = {1,...,N} and HoC\Ili = 0- 
Of course, we do not know the explicit sets Do and 11/; all we know is that they exist. The explicit values 
in the sets clearly depend on time but we will allow that time to be arbitrary so the analysis below will be 
for all t. Obviously the system may switch back and forth between the cases of No = 0 and No > 0. But 
note that after the system has switched to NQ = 0 at certain moment, if it persists there, then the system 
is bounded, with ||.E'|| < r for all t. If otherwise, then No > 0 will happen. So firom now on, we assume 
No > 0 (but not necessarily persists there), that is, the set IIo is non-empty. Then using analysis ideas 
from the theory of stability of intercoimected systems [21] and using Equations (19) and (20), we have 

viE) < E-m"+ E fll^'ll E -M\] + E (mE-ll^'ll) + 

Y.\-Wt^4^t) + E f«ll^ll E ll^^ll) + E fll^ll E«ll^^ll) 
ieUi ten/ \ jeiio        )     x&ij \        jenj ) 

Note for each fixed No-, with the corresponding Ni = N - No we can find constants Ki{Ni), K2{Ni) and 
K3{Ni) such that 

K^{N,) > E«1MI = E«M 
j€tli ieUi 

K^m > E(-ll^ir+HI^1l) (21) 
»€n/ 

In fact, the equations above are satisfied by choosing 

Ki{Ni)   =   Njar 

K2iNj)   =    ^Pl4 (22) 

Ks{Ni)   =   Nya 

Then, we have 

ViE) < EHI^+E II^'IIE^M +^iEM+^^+^iEM+^3 
»€no teno \        jeno / teno jeiio 

= E -rf+ E (m E ^ii^^ii) +2ifi -£ m\+K2+Ks 
teno teno V        >eno / «6no 



Let iv^ = [||^o||,\\E'o\l...,\\E^o°\\\ (the composition of this vector can be diflFerent at different times) 

and the No x No matrix S = [sj„] be specified by 

= / -('^ + «).   i = " (23) 
\ -a, j=itn 

so we have 
V{E)<-w'^Sw + 2Ki22\\E*\\ + K2 + K3 

ieno 

It can be proven that the eigenvalues of matrix S include one at - (cr + Noa) and iVb - 1 repeated value of 
-(T. Since a > 0, we have Xmin{S) = -{a + Noo). Assume o < -§, then it is guaranteed that a < —§^ 
and thus, Xmin{S) > 0, so we have 

V{E)    <    -\min{S) X; ll^f + -iKx X) ll^ll +K2 + K3 
teno i&io 

<   {a + Noa) X \\Ef-¥2Ki\No ^ Wt + K^ + Kz 
i&io V      »eno 

=   {(T-\-Noa)Eo'' + 2Ky^/N^Eo + K2-{-K3 (24) 

where Eo = JY^X&I   W^*^- Above we used the fact that given n real numbers, their mean value is smaller 

than or equal to their rms (root of mean square) value. 
Now define function 

F{^, Ni) = Ko{Ni)d'^ + 2Ki(Ni)y/N - iV/i? + Ifa W) + KsiNj) (25) 

with 
Ko{Ni) = (T+iN-Ni)a (26) 

and Ki{Ni) are defined in Equation (22) for i = 1,2,3. Assume ■& is the maximum root of F(i?,7V/) = 0 
with Ni fixed. Then for any Nj, we have F(i?,iV/) < 0 for i? > £?M with constant E^ defined as 

EM =   max   t? 
0<Ni<N 

By comparing Equation (24) with (25), we can see that V{E) < 0 whenever E^ = Eieno ll'^ll > -^M- 

From the definitions of Uo, 11/ and r, we may further deduce that V{E) < 0 whenever X)ili ||-S'|| > 
J5^ + (JV-l)r2. Let 

Ee = El + {N-iy + e (27) 

where e is an arbitrarily small positive number. Ako let Es = ]Ct=i ll^'ll ^^^ define compact set QB = 
{Es I £^s < JE^E}- Then V{E) < 0 on dCls (the boundary of QB)- Note that on OUB, fi^om Equation (14) 
and (27) we have 

N N 

Since for any i it satisfies that ||£;*|p < Xlili ||S<|p, we have A„i„(P) ||E<||^ < V{E) < PMEC for any i, 
that is,            

where /9m = Xmin(P) and it can be solved that 

(Ap + l)'' + (fc„ + fc)^       //feg + (fc. + fc)'-iy      1 
^"'      2fcp(fc„+fc)      Vv  2fcp(fcv+fc)  y   *^ 



Equation (28) gives an upper bound of \\E'\\ for any i which no agent could go beyond if the system starts 
initially within the set fls. 

Finally, recall we assumed that -hAf (||^'-'||) \\[kp fctiJH < « for any i and j at any t. Rrom Equation (28), 
this is justified if Es{0) € UB and the sensor profile f(x) is such that 

f(2,[^. + J^Tm]>l ?^ (29) 

since Afix) = 1 -/(x), o = 2/3^5 and \\x'^\\ < \\E'\\ + \\&\\ +1| [dj''^, d^"^]^ I < 2max^ ||£*|| + y/Dj + D^. 

With all the deductions above, we collect all the conditions and state them in the following theorem. 

Theorem 1. Consider the N-agent error system described by the model in Equation (11). Assume the 
resource profile is continuous with finite slope at all points such that || V J(x(t))|| < jR. Define rr = 2kfR + 
kr exp(-i)r, + 2kpDp + 2fc„D„ + 2fc/I>/. Let 

._(fcp + l)=' + (fe„ + fe)V     //fc2 + (fe„+fc)2-iy      1 
'^^•'" 2kj.{K + k) VV     2Mfc« + Ar)     )   ^ kl 

Also let 6 he some constant satisfies 0 < 6 < I and r = ^PM^T-   Assume there exist positive constants 
a < ^^ and EM = maxo<7v,<jv'i?, where i? is the maximum root of function 

F(i?, Ni) = Ko{Ni)^^ + 2Ki{Ni)^N - Ni^ + K^iNj) + K^iNi) 

with 

KoiNi) = -{l-0) + {N-Ni)a 

Ki{Ni) = Niar 

K^m = ^Phrl 
KaiNi) = Nya 

such that for the sensor profile we have 

V V ^"^ ^   '        J 2f3My/kfn^. 

with Ee = Ejf + {N-l)r^+s ande an arbitrarily small positive number. Define Es{t) = J2^-i \\E*{t)\\ and 
set QB = {Es I Es < Ee}. If it satisfies Es{0) € HB, then the trajectories of the error system is uniformly 

bounded and \\E'\\ < J^K for all i andt. 

Remark. This theorem gives us a condition on the sensor profile and the initial condition of the sj^tem such 
that the system trajectories are bounded. If the agents start close enough to each other and the sensor 
profile is "flat" enough, then the swarm can stay cohesive while move along the resomrce profile. The results 
obtained here are quite conservative since we have to over botmd many nonlinear terms in the deduction. 

To reduce the demand to the "flat" range of the sensor, smaller E^ is desirable. FVom Equation (27) and 
(29) we can see that smaller kr and r, are helpful since that means agents "push" each other less. Smaller 
kf is also helpful since it means the agents may get distracted less by environment and thus, have better 
chance to stay cohesive. A "flat" resource profile, meaning smaller R, also helps the swarm stay cohesive. 

Although at the beginning of the paper we assume all the agents will follow the same resource profile, 
in fact from the deduction of the theorem we can see that the result also holds for the case when the agents 
are following different profiles, so long as those profiles are continuous with finite slope at all points. For 
this case, the preservation of cohesiveness indicates that due to the desire to stay together, the agents each 
sacrifice following their own profile and compromise to follow certain "averaged" profile. This coincides the 
theoretical results we obtained in our previous works [19, 20] and is observed in the simulation results in the 
next section. i 



4    Simulation Results 

111 this section we show some siiiiiilatioii results. Unless otherwise stated, the parameters used are: N = 10, 
kp = 1, kv = 1, k = 0.1, kf = 0.1, kr = 10, and r,, = 1. The sensor profile we used is described in 
Equation (4) with c/o = 1.00015, cji = 0.5, and c/2 = 8252. The noise bounds are Dp = 5, Dy = 5, and 
Df = 5. For simplicity, instead of using the same (non-plane) profile, we assign different agents different 
plane resource profiles, with their gradients represented by randomly generated numbers. For the following 
simulation runs, the norm of the gradients are smaller than or equal to ii = 159.  We pick 9 = 0.47 and 

a = 0.0472. Then by solving Equation (25), we obtain E^ = 5.9 x 10** and J^E^ = 4116, which specify 

the size of the set ^B and the upper bound of ||£'|| for all i, respectively, as stated in Theorem 1. The 
positions and velocity of the agents are initialized randomly. All simulations are run 20 seconds. 

Figure 2 to 4 are for the case when the stability condition and initial condition specified by the theorem 
are satisfied. Figure 2 shows that the agents appear to move around erratically at the beginning, but soon 
they swarm together and move along the same direction, although they are assigned different plane resource 
profiles. Due to the effect of inter-agent repulsion, they do not shrink to one point but keep certain mutual 
spacing. Prom Figure 3 we can see that the agents have quite different velocities initially, but they gradually 
catch up with each other. Note this may not be the case if the profiles they are moving along are not plane 
profiles. That is, if we use some complicated profile (with "hills" and "valleys"), then their velocity may 
oscillate and will not always be the same. Figure 4 shows how the norms of the error of the agents changes 
as time goes by. 

Swarm ageni position tra|eclones 

Figure 2: Position trajectories of the agents in 3d space (stable case). 

If we keep all the parameters above the same but only decrease Cf2, then we reduce the capability of the 
sensor and unstable behaviors of tlie system are observed. Here we let c/2 = 1500 and Figure 5 shows that 
the swarm splits up and no more cohesiveness is achieved. 

5    Concluding Remarks 

In this paper we derive stability conditions under which social foraging swarms with limited sensing capa- 
bility maintain cohesiveness when following certain resource profiles. It is interesting to note two points. 
Firstly, we can see some connection between the limited sensing capability and changes of communication 
topology. Specifically, if two agents are close to each other, then they can sense each other well and thus, 
are "connected." If they are far away, then each agent is located on a position that is at the "low end" of 
the sensor profile f{x) of the other agent. Since we have lim2,._oo f{x) = 0, then they are "disconnected." 
Apparently this change from being "connected" to being "disconnected" may be regarded as a change in 
the communication topology.   Secondly, by comparing this paper with our previous work [19, 20], we can 
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Figure 3: Velocity trajectories of the agents vs. Time (stable case) 

Figure 4: Norm of E' of the agents vs. Time (stable case) 

find some similarity in both the proof of the theory and the simulation results. This implies there may exist 
some coimection between the limited sensing capability and a noisy environment/measurements. Now, if 
we combine the two points mentioned above, it would be interesting for us to think about the following 
question: Is it possible to draw some explicit connection between the two seemingly different topics of noisy 
environment/measurements and changes of communication topology? If we could do so, then it is possible 
to overcome some difficult problems on one topic by solving tfie "counterpart" (but possibly easier) problem 
in the other topic. 
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